Supporting the curation of biological databases with reusable text mining.

نویسندگان

  • Olivo Miotto
  • Tin Wee Tan
  • Vladimir Brusic
چکیده

Curators of biological databases transfer knowledge from scientific publications, a laborious and expensive manual process. Machine learning algorithms can reduce the workload of curators by filtering relevant biomedical literature, though their widespread adoption will depend on the availability of intuitive tools that can be configured for a variety of tasks. We propose a new method for supporting curators by means of document categorization, and describe the architecture of a curator-oriented tool implementing this method using techniques that require no computational linguistic or programming expertise. To demonstrate the feasibility of this approach, we prototyped an application of this method to support a real curation task: identifying PubMed abstracts that contain allergen cross-reactivity information. We tested the performance of two different classifier algorithms (CART and ANN), applied to both composite and single-word features, using several feature scoring functions. Both classifiers exceeded our performance targets, the ANN classifier yielding the best results. These results show that the method we propose can deliver the level of performance needed to assist database curation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of text data mining for database curation: lessons learned from the KDD Challenge Cup

MOTIVATION The biological literature is a major repository of knowledge. Many biological databases draw much of their content from a careful curation of this literature. However, as the volume of literature increases, the burden of curation increases. Text mining may provide useful tools to assist in the curation process. To date, the lack of standards has made it impossible to determine whethe...

متن کامل

Text mining for the biocuration workflow

Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documen...

متن کامل

Accelerating literature curation with text-mining tools: a case study of using PubTator to curate genes in PubMed abstracts

Today's biomedical research has become heavily dependent on access to the biological knowledge encoded in expert curated biological databases. As the volume of biological literature grows rapidly, it becomes increasingly difficult for biocurators to keep up with the literature because manual curation is an expensive and time-consuming endeavour. Past research has suggested that computer-assiste...

متن کامل

Supporting knowledge discovery for biodiversity

A proposal for text mining as a support for knowledge discovery on biological descriptions is introduced. Our aim is both to sustain the curation of databases and to offer an alternative representation frame for accessing information in the biodiversity domain. We works on raw texts with minimum human intervention, applying natural language processing to integrate linguistic and domain knowledg...

متن کامل

Improving links between literature and biological data with text mining: a case study with GEO, PDB and MEDLINE

High-throughput experiments and bioinformatics techniques are creating an exploding volume of data that are becoming overwhelming to keep track of for biologists and researchers who need to access, analyze and process existing data. Much of the available data are being deposited in specialized databases, such as the Gene Expression Omnibus (GEO) for microarrays or the Protein Data Bank (PDB) fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome informatics. International Conference on Genome Informatics

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2005